II Year – I SEMESTER

T P C 3+1 0 3

ELECTRICAL CIRCUIT ANALYSIS-II

Preamble:

This course aims at study of three phase systems, transient analysis, network synthesis and fourier analysis for the future study and analysis of power systems.

Objectives:

- i. To study the concepts of balanced three-phase circuits.
- ii. To study the concepts of unbalanced three-phase circuits.
- iii. To study the transient behaviour of electrical networks with DC, pulse and AC excitations.
- iv. To study the performance of a network based on input and output excitation/response.
- v. To understand the realization of electrical network function into electrical equivalent passive elements.
- vi. To understand the application of fourier series and fourier transforms for analysis of electrical circuits.

UNIT-I Balanced Three phase circuits

Phase sequence- star and delta connection - relation between line and phase voltages and currents in balanced systems - analysis of balanced three phase circuits - measurement of active and reactive power in balanced three phase systems.

UNIT-II Unbalanced Three phase circuits

Analysis of three phase unbalanced circuits: Loop method – Star-Delta transformation technique, Two wattmeter methods for measurement of three phase power.

UNIT-III Transient Analysis in DC and AC circuits

Transient response of R-L, R-C, R-L-C circuits for DC and AC excitations, Solution using differential equations and Laplace transforms.

UNIT-IV Two Port Networks

Two port network parameters -Z, Y, ABCD and hybrid parameters and their relations, Cascaded networks - poles and zeros of network functions.

UNIT-V Network synthesis

Positive real function - basic synthesis procedure - LC immittance functions - RC impedance functions and RL admittance function - RL impedance function and RC admittance function - Foster and Cauer methods.

UNIT-VI Fourier analysis and Transforms

Fourier theorem- Trigonometric form and exponential form of Fourier series, Conditions of symmetry- line spectra and phase angle spectra, Analysis of electrical circuits to non sinusoidal periodic waveforms.

Fourier integrals and Fourier transforms – properties of Fourier transforms and application to electrical circuits.

Outcomes:

- i. Students are able to solve three- phase circuits under balanced condition.
- Students are able to solve three- phase circuits under unbalanced condition.
- iii. Students are able find out transient response of electrical networks with different types of excitations.
- iv. Students are able to estimate the different types of two port network parameters.
- v. Students are able to represent electrical equivalent network for a given network transfer function.
- vi. Students are able to extract different harmonics components from the response of a electrical network.

Text Books:

- 1. Engineering Circuit Analysis by William Hayt and Jack E.Kemmerley, Mc Graw Hill Company, 6th edition.
- 2. Network synthesis: Van Valkenburg; Prentice-Hall of India Private Ltd.

Reference Books:

- 1. Introduction to circuit analysis and design by Tildon Glisson. Jr, Springer Publications.
- 2. Circuits by A.Bruce Carlson, Cengage Learning Publications.
- 3. Network Theory Analysis and Synthesis by Smarajit Ghosh, PHI publications.
- 4. Networks and Systems by D. Roy Choudhury, New Age International publishers.
- 5. Electric Circuits by David A. Bell, Oxford publications.
- 6. Circuit Theory (Analysis and Synthesis) by A.chakrabarthi, Dhanpat Rai&co.